Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chaos ; 30(9): 093122, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33003923

RESUMO

The effects of the time delay on the stability of different synchronized states of a globally coupled network are investigated. Conditions for the stability of the synchronized fixed points, synchronized periodic orbits, or synchronized chaos in a network of globally coupled chaotic smooth maps over a ring lattice with a homogeneous delay are derived analytically. Our analysis reveals that the stability properties of the synchronized dynamics are significantly different for odd and even time delays. The conditions for the stability of a synchronized fixed point and synchronized period-2 orbits for both odd and even delays are determined analytically. The range of parameter values for the stability of synchronized chaos has been calculated for a unit delay. All theoretical results are illustrated with the help of numerical examples.

2.
Plant Cell ; 32(2): 486-507, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31757927

RESUMO

Nitrogen (N) limits crop yield, and improvement of N nutrition remains a key goal for crop research; one approach to improve N nutrition is identifying plant-interacting, N2-fixing microbes. Rhodotorula mucilaginosa JGTA-S1 is a basidiomycetous yeast endophyte of narrowleaf cattail (Typha angustifolia). JGTA-S1 could not convert nitrate or nitrite to ammonium but harbors diazotrophic (N2-fixing) endobacteria (Pseudomonas stutzeri) that allow JGTA-S1 to fix N2 and grow in a N-free environment; moreover, P. stutzeri dinitrogen reductase was transcribed in JGTA-S1 even under adequate N. Endobacteria-deficient JGTA-S1 had reduced fitness, which was restored by reintroducing P. stutzeri JGTA-S1 colonizes rice (Oryza sativa), significantly improving its growth, N content, and relative N-use efficiency. Endofungal P. stutzeri plays a significant role in increasing the biomass and ammonium content of rice treated with JGTA-S1; also, JGTA-S1 has better N2-fixing ability than free-living P. stutzeri and provides fixed N to the plant. Genes involved in N metabolism, N transporters, and NODULE INCEPTION-like transcription factors were upregulated in rice roots within 24 h of JGTA-S1 treatment. In association with rice, JGTA-S1 has a filamentous phase and P. stutzeri only penetrated filamentous JGTA-S1. Together, these results demonstrate an interkingdom interaction that improves rice N nutrition.


Assuntos
Bactérias/metabolismo , Basidiomycota/metabolismo , Fixação de Nitrogênio/fisiologia , Nitrogênio/metabolismo , Oryza/metabolismo , Oryza/microbiologia , Rhodotorula/metabolismo , Compostos de Amônio , Basidiomycota/crescimento & desenvolvimento , Endófitos/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Pseudomonas/metabolismo , Pseudomonas stutzeri/metabolismo , Rhodotorula/crescimento & desenvolvimento , Rhodotorula/isolamento & purificação , Simbiose , Transcriptoma
3.
DNA Res ; 26(2): 131-146, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30615101

RESUMO

Endophytic yeasts of genus Rhodotorula are gaining importance for their ability to improve plant growth. The nature of their interaction with plants, however, remains unknown. Rhodotorula mucilaginosa JGTA-S1 was isolated as an endophyte of Typha angustifolia and promoted growth in the host. To investigate the life-strategy of the yeast from a genomics perspective, we used Illumina and Oxford Nanopore reads to generate a high-quality annotated draft assembly of JGTA-S1 and compared its genome to three other Rhodotorula yeasts and the close relative Rhodosporidium toruloides. JGTA-S1 is a haploid yeast possessing several genes potentially facilitating its endophytic lifestyle such as those responsible for solubilizing phosphate and producing phytohormones. An intact mating-locus in JGTA-S1 raised the possibility of a yet unknown sexual reproductive cycle in Rhodotorula yeasts. Additionally, JGTA-S1 had functional anti-freezing genes and was also unique in lacking a functional nitrate-assimilation pathway-a feature that is associated with obligate biotrophs. Nitrogen-fixing endobacteria were found within JGTA-S1 that may circumvent this defective N-metabolism. JGTA-S1 genome data coupled with experimental evidence give us an insight into the nature of its beneficial interaction with plants.


Assuntos
Endófitos , Genoma Fúngico , Redes e Vias Metabólicas , Rhodotorula/genética , Simbiose , Bactérias/metabolismo , Genômica , Nitrogênio/metabolismo , Pseudomonas stutzeri/metabolismo , Rhodotorula/metabolismo , Rhodotorula/fisiologia , Análise de Sequência de DNA , Typhaceae
4.
Chaos ; 25(8): 083114, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26328565

RESUMO

The synchronization behavior of coupled chaotic discontinuous maps over a ring network with dynamic random connections is reported in this paper. It is observed that random rewiring stabilizes one of the two strongly unstable fixed points of the local map. Depending on initial conditions, the network synchronizes to different unstable fixed points, which signifies the existence of synchronized multistability in the complex network. Moreover, the length of discontinuity of the local map has an important role in generating windows of different synchronized fixed points. Synchronized fixed point and synchronized periodic orbits are found in the network depending on coupling strength and different parameter values of the local map. We have identified the existence of period subtracting bifurcation with respect to coupling strength in the network. The range of coupling strength for the occurrence of synchronized multistable spatiotemporal fixed points is determined. This range strongly depends upon the dynamic rewiring probability and also on the local map.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...